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a b s t r a c t

We introduce an unsplit staggered mesh scheme (USM) for multidimensional magnetohy-
drodynamics (MHD) that uses a constrained transport (CT) method with high-order Godu-
nov fluxes and incorporates a new data reconstruction–evolution algorithm for second-
order MHD interface states. In this new algorithm, the USM scheme includes so-called
‘‘multidimensional MHD terms”, proportional to r � B, in a dimensionally-unsplit way in
a single update. This data reconstruction–evolution step, extended from the corner trans-
port upwind (CTU) approach of Colella, maintains in-plane dynamics very well, as shown
by the advection of a very weak magnetic field loop in 2D. This data reconstruction–evolu-
tion algorithm is also of advantage in its consistency and simplicity when extended to 3D.
The scheme maintains the r � B ¼ 0 constraint by solving a set of discrete induction equa-
tions using the standard CT approach, where the accuracy of the computed electric field
directly influences the quality of the magnetic field solution. We address the lack of proper
dissipative behavior in the simple electric field averaging scheme and present a new mod-
ified electric field construction (MEC) that includes multidimensional derivative informa-
tion and enhances solution accuracy. A series of comparison studies demonstrates the
excellent performance of the full USM–MEC scheme for many stringent multidimensional
MHD test problems chosen from the literature. The scheme is implemented and currently
freely available in the University of Chicago ASC FLASH Center’s FLASH3 release.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The high-order Godunov method, with its accuracy and robustness, has led to numerous developments in numerical mag-
netohydrodynamics (MHD). A brief list of these contributions stemming from the use of this method includes the work of
Brio and Wu [7], Zachary et al. [43], Dai and Woodward [10], Ryu and Jones [34], Balsara and Spicer [2], Powell et al.
[32], Londrillo and Del Zanna [26,27], Pen et al. [30], Balsara [4], Crockett et al. [9], and Gardiner and Stone [16–18].

A number of these studies have highlighted the advantages of using an unsplit formulation in numerical MHD [9,16–18].
The need for having an unsplit MHD formulation arises because dimensional-splitting methods do not include the evolution
of the normal (to the sweep direction) magnetic field during each sweep. An early effort to find an alternative formulation to
overcome this difficulty using conservative schemes can be found in the 8-wave formulation by Powell et al. [32] which
explicitly carries the divergence ‘‘field”.

A recent unsplit MHD scheme for multidimensions by Gardiner and Stone [16,17] identified multidimensional MHD
terms that need to be included in unsplit schemes as well as the proper way to include these terms in their algorithm – a
. All rights reserved.
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combination of constrained transport (CT) and corner transport upwind (CTU) schemes. Even following these key ideas there
is still some difficulty in designing an unsplit method to account for all important physics as well its effectiveness, particu-
larly with regard to high-order solution accuracy with the correct physics, robustness, and the algorithm’s extensions to 3D.

The present paper addresses these issues in a new unsplit formalism for multidimensional MHD. We present a new data
reconstruction–evolution algorithm that yields second-order accurate MHD interface states, and accounts for all necessary
multidimensional MHD terms. It should be noted that this data reconstruction–evolution algorithm, as presented for 2D, ex-
tends straightforwardly to 3D, unlike [16,17] where additional complexity is introduced [17,18]. Additionally there, the pri-
mary 3D integrator, termed 6-solve CTU + CT algorithm, is subject to a reduced CFL stability range, e.g., less than 0.5. In short,
the present unsplit staggered mesh (USM) scheme achieves a numerically efficient and consistent MHD algorithm in mul-
tidimensions without additional complexity, while maintaining a wide CFL stability range, e.g., less than 1.0.

We begin by briefly reviewing previous relevant work in numerical MHD in the following subsections based on choices of
where to collocate magnetic field variables and how to solve the associated r � B ¼ 0 constraint numerically.

1.1. Cell-centered fields algorithms in high-order Godunov MHD

The high-order Godunov method, first developed by van Leer [41] for Euler flows opened a new era of robust and accurate
performance in numerical simulations of MHD as well as hydrodynamics. Early efforts in high-order Godunov MHD schemes
focused entirely on numerical formulations that collocated the magnetic fields at cell centers because the underlying aspects
of Godunov algorithms are based on conservation laws in which the cell-centered variables are conserved. Thus the MHD
equations were treated as a straightforward system of conservation laws in earlier Godunov formulations.

In formulations with cell-centered fields there is no particular difficulty encountered except in multidimensions. This is
because in 1D MHD the normal field is held constant and divergence-less evolution of the magnetic fields is obtained nat-
urally. In multidimensional MHD, however, the requirement of maintaining the solenoidal constraint involves solving the
induction equation, which for ideal MHD has the form,
oB
ot
þr� E ¼ 0: ð1Þ
Taking the divergence of the induction equation (1) gives
or � B
ot

¼ r � ð�r� EÞ ¼ 0 ð2Þ
and we see that the induction equation implies the divergence-less evolution of the magnetic fields. This analytical result
may not hold true numerically, because the discrete divergence of the discrete curl may not give zero identically.

Until recently, two traditional approaches have been proposed to enforce the divergence-free constraint in formulations
using cell-centered fields. The first is the projection method, early works in [1,34,43] and recently in [9], which takes a diver-
gence-cleaning step in their high-order Godunov based MHD scheme. In this approach two choices are available, a scalar or
vector divergence-cleaning, depending on the choice of real or Fourier spaces in which the divergence-cleaning is performed.
The disadvantage of the approach is the cost of the associated Poisson equation solution either by direct or iterative methods.

The second method, the so-called 8-wave formalism, proposed by Powell et al. [32], utilizes the modified MHD equations
that explicitly includes source terms proportional to r � B. An additional eighth wave reflects the propagation of the mag-
netic monopole ‘‘field”, designed to be convected with local flow speeds, and eventually advected out of the computational
domain or otherwise accumulated benignly. Although the scheme is found to be robust and accurate (as compared to the
basic conservative scheme), this approach results in a non-conservative form of the MHD governing equations and is suscep-
tible to producing incorrect jump conditions and propagation speeds across discontinuities in certain problems [32,40].
There have also been other approaches [12,20] to extend the 8-wave scheme that manifest r � B as a source term.

1.2. Cell face-centered fields algorithms in high-order Godunov MHD: the staggered mesh algorithm

To overcome the issues raised in formulating high-order Godunov based MHD using cell-centered fields, researchers have
developed various staggered mesh algorithms that use a staggered collocation of the magnetic fields and solve the induction
equation (1) via a discrete form of Stokes’ theorem.

The staggered mesh algorithm, first introduced by Yee [42] to compute divergence-free MHD flows in a finite difference
formulation that transports the electromagnetic fields, has resulted in numerous approaches. Brecht et al. [6] used a stag-
gered mesh formulation for their global MHD modeling of Earth’s magnetosphere for which they used a non-linear FCT flux
limiter. Evans and Hawley [14] followed a vector potential approach on a staggered grid for evolution of the MHD induction
equation. Another approach by DeVore [13] also used the staggered mesh arrangement and applied it using a flux corrected
transport (FCT) algorithm. Following Evans and Hawley [14], the term constrained transport (CT) has become popular and
encompasses all the various methods developed with a staggered mesh approach [2,4,5,11,13,14,16,17,21,22,26,35,40].
The original CT method placed the surface variables – the components of the magnetic field – at the cell face centers (cell
faces), and the rest of the volumetric variables such as mass, momentum and energy at the cell centers on a staggered grid.
A variant CT approach by Tóth [40] placed all of the variables at the cell centers and used central differencing for the induc-
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tion equation. Tóth also made an extensive comparison study of different MHD schemes focusing on the divergence-free
property of each scheme. He compared various approaches differing in how the base scheme (e.g., van Leer’s TVD-MUSCL,
or Yee’s TVD-Lax Friedrichs) is modified with regard to the induction equation. Tóth’s study [40] compared not only the three
major algorithms (i.e., the projection scheme, 8-wave scheme, and CT-based staggered mesh scheme) but also different ap-
proaches within the CT formulations.

In CT schemes, different approaches are adopted in obtaining the electric field, E ¼ �u� B (in ideal MHD). The flux-CT
scheme of Balsara and Spicer [2] uses second-order Godunov fluxes to construct E by using the so-called duality relation
between the components of the flux vector and the electric fields. The field-interpolated CT scheme of Dai and Woodward
[11] uses interpolated magnetic and velocity fields to obtain the electric field in their Godunov-type formulation. Ryu et al.
[35] also proposed a transport-flux-interpolated CT scheme which basically transports the upwind fluxes along with the
upwind correction terms for maintaining the TVD property. Balsara studied a new reconstruction algorithm [3,4] for
cell-centered magnetic fields. In this modified-CT approach the magnetic fields at each cell center are reconstructed di-
rectly from divergence-free cell face field components using a reconstruction polynomial. By design, such reconstructed
magnetic fields at the cell centers (and not only the cell face fields) are also guaranteed to maintain the divergence-free
constraint. Recently, Gardiner and Stone [16] have developed a multidimensional CT scheme that is consistent with plane–
parallel, grid-aligned 1D base flows by modifying the simple arithmetic electric field averaging scheme of Balsara and
Spicer [2].

Another approach, the upwinding-CT (UTC) scheme, was proposed by Londrillo and Del Zanna [27]. Their approach used a
similar reconstruction algorithm as in [3,4] for the magnetic field and evaluates the electric field based on an upwinding
strategy in their Godunov-type scheme. In the UTC scheme, the divergence-free property is maintained intrinsically. Yet
it is evident from their test results that the scheme suffers from keeping r � B only approximately low, allowing values
up to an order of 10�4 (see [26]), while, as shown later, our scheme presented here preserves r � B to the order of
10�12 to 10�16 in simulations. It is worth mentioning that, in Tóth’s comparative study [40], one of the most accurate
high-order MHD schemes is the flux-CT scheme of Balsara and Spicer [2]. Balsara [3,4] has also extended his original
flux-CT scheme and implemented it on an AMR grid. As a variant of the central scheme [25], most recently, Li [23] extended
the scheme that uses overlapping cells for MHD flows. He also proposed a third-order divergence-free reconstruction and a
corresponding third-order CT scheme, giving a third-order accurate algorithm.

In developing our scheme we adopt the flux-CT approach of Balsara and Spicer [2] and extend its basic ideas to develop a
new unsplit staggered mesh (USM) scheme. Upon systematically developing a new data reconstruction–evolution algorithm
and a new modified electric field construction (MEC) we term our complete scheme USM–MEC.

The paper is organized as follows. In Section 2, we first introduce a new second-order MUSCL-Hancock type data recon-
struction–evolution scheme using a single step characteristic decomposition formalism. This step includes multidimensional
MHD terms that are important in nonlinear evolutionary plasma flows and updates cell interface states by a half time step.
The normal magnetic fields are evolved separately by a half time step, maintaining the divergence-free constraint as well as
the continuity restriction across cell interfaces. The data reconstruction–evolution step is followed by solving a Riemann
problem that produces high-order Godunov fluxes. Using these fluxes, in Section 3, we present a new modified electric field
construction (MEC) algorithm that extends the basic construction scheme of Balsara and Spicer [2] to a scheme containing
multidimensional gradient information. We summarize our overall USM–MEC scheme in Section 4. In Section 5 we present
numerical results of various test problems that demonstrate the significant qualitative and quantitative performance of our
scheme. We conclude the paper in Section 6.

2. The USM scheme in ideal MHD

We focus on solving the equations of ideal magnetohydrodynamics (MHD) formulated as hyperbolic system of conserva-
tion laws as
oq
ot
þr � quð Þ ¼ 0; ð3Þ

oqu
ot
þr � ðquu� BBÞ þ rptot ¼ 0; ð4Þ

oB
ot
þr � ðuB� BuÞ ¼ 0; ð5Þ

oE
ot
þr � ðuEþ uptot � BB � uÞ ¼ 0: ð6Þ
The above equations represent the continuity, momentum, induction, and energy equations, respectively. The conservative
variables include the plasma mass density q, momentum qu, magnetic field B, and total energy density E. The plasma veloc-
ity is u and its magnitude U2 ¼ u2 þ v2 þw2, current density j ¼ r� B, total pressure ptot ¼ pþ Bp where
p ¼ ðc� 1ÞðE� 1

2 qU2 � 1
2 B2Þ is the thermal pressure and Bp ¼ ðB2

x þ B2
y þ B2

z Þ=2 the magnetic pressure, and c the ratio of spe-
cific heats. In addition, the MHD equations should satisfy the solenoidal constraintr � B ¼ 0, which is implicit in the conser-
vation form. The above equations can be written in a matrix form, e.g., in 2D,
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oU
ot
þ oF

ox
þ oG

oy
¼ 0; ð7Þ
where U contains the eight MHD conservative variables, and F and G represent corresponding conservative fluxes in x; y
directions. The conservative variable vector U is
U ¼ ðq;qu;qv;qw;Bx;By;Bz; EÞT ð8Þ
and multidimensional fluxes F and G are
F ¼

qu

qu2 þ ptot � B2
x

quv � ByBx

quw� BzBx

0
uBy � vBxð¼ �EzÞ
uBz �wBxð¼ EyÞ

ðEþ ptotÞu� BxðuBx þ vBy þwBzÞ

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; G ¼

qv
qvu� BxBy

qv2 þ ptot � B2
y

qvw� BzBy

vBx � uByð¼ EzÞ
0

vBz �wByð¼ �ExÞ
ðEþ ptotÞv � ByðuBx þ vBy þwBzÞ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: ð9Þ
Note that Ohm’s law for perfectly conducting plasma, E ¼ �u� B, has been used, where E ¼ ðEx; Ey; EzÞT is the electric field.

2.1. Data reconstruction–evolution scheme for the USM

The first step of the USM scheme for multidimensional MHD makes use of a second-order MUSCL-Hancock type TVD algo-
rithm for its data reconstruction–evolution. The data reconstruction–evolution uses cell-centered variables to calculate cell
interface values that are required to solve a Riemann problem. In this reconstruction–evolution step, it is important to in-
clude terms that reflect the multidimensional character of the MHD equations. These terms have usually been ignored in
dimensionally-split type data reconstruction–evolution formulations but have been highlighted by Crockett et al. [9] and
Gardiner and Stone [16,17].

In this section we present a new dimensionally-unsplit data reconstruction–evolution algorithm that includes these mul-
tidimensional MHD terms. This approach is computationally more efficient than the 1D Godunov based data reconstruction–
evolution schemes because it does not involve solving a Riemann problem which arises in the usual transverse predictor step
[8,9,16]. Additionally, it is mathematically more consistent with the governing multidimensional MHD equations than the
1D data reconstruction–evolution algorithm used in [9,16].

We begin our discussion by rewriting the conservative form of Eq. (7) in primitive variables V ¼ ðq;u;v ;w;Bx;By;Bz; pÞT,
oV
ot
þ Ax

oV
ox
þ Ay

oV
oy
¼ 0; ð10Þ
where the well-known matrices Ax and Ay are given by
Ax ¼

u q 0 0 0 0 0 0

0 u 0 0 � Bx
q

By

q
Bz
q

1
q

0 0 u 0 � By

q � Bx
q 0 0

0 0 0 u � Bz
q 0 � Bx

q 0

0 0 0 0 0 0 0 0
0 By �Bx 0 �v u 0 0
0 Bz 0 �Bx �w 0 u 0
0 cp 0 0 �ku � B 0 0 u

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
; ð11Þ

Ay ¼

v 0 q 0 0 0 0 0

0 v 0 0 � By

q � Bx
q 0 0

0 0 v 0 Bx
q � By

q
Bz
q

1
q

0 0 0 v 0 � Bz
q � By

q 0

0 �By Bx 0 v �u 0 0
0 0 0 0 0 0 0 0
0 0 Bz �By 0 �w v 0
0 0 cp 0 0 �ku � B 0 v ;

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
ð12Þ
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with k ¼ 1� c. Note that, from relations (9), there are seven non-trivial equations and one trivial equation for which the time
derivatives become zero, yielding the zeros located in each corresponding row in the above 8� 8 matrices (11) and (12). In
general, assuming the left ðVLÞ and right ðVRÞ states and the solution (V) are close to a constant state ðVÞ, the primitive form
of the Eq. (10) can be replaced by a quasi-linear system of equation,
1 As
2 For
oV
ot
þ A � rV ¼ oV

ot
þ ðAx;AyÞ � rV ¼ 0; ð13Þ
where A � AðVÞ ¼ AðVL;VRÞ.
In 1D MHD, the full set of eight MHD equations can be reduced to seven of them as the gradient of the normal magnetic

field should be zero, and such a constant normal field is not to be evaluated. For multidimensional MHD, however, the terms
oBx=ox and oBy=oy in the full MHD equations do not vanish in general, and they play crucial roles that cannot be ignored.

In order to include the gradient terms for multidimensional MHD in a data reconstruction–evolution formulation, we
present an approach which is built upon a dimensionally-unsplit second-order MUSCL-Hancock algorithm.

We treat the evolution of the normal field, BN, separately from the other primitive variables, i.e., for a case with BN ¼ Bx,
we define
V ¼
bV
Bx

" #
and Ax ¼

bAx ABx

0 0

" #
: ð14Þ
Here bV is a 7� 1 vector excluding Bx, bAx is a 7� 7 matrix omitting both the fifth row and column in the original matrix Ax

(11), and ABx is a 7� 1 vector,
ABx ¼ 0;�Bx

q
;�By

q
;�Bz

q
;�v ;�w;�ku � B

� �T

: ð15Þ
Similarly, for BN ¼ By, bAy is constructed by omitting both the sixth row and column in the original matrix Ay (12), and ABy is
ABy ¼ 0;�Bx

q
;�By

q
;�Bz

q
;�u;�w;�ku � B

� �T

: ð16Þ
A similar approach was adopted by Crockett et al. [9] but their equivalent terms for bAx and bAy omitted the factor k in the last
entry, probably typographically. The terms in ABx and ABy will be referred to as ‘‘multidimensional MHD terms” in the fol-
lowing. Note that the hat (̂ ) notation has been introduced for the reduced system (i.e., the one corresponding to the usual
1D MHD equations) and the bar (�) notation retained for the re-assembled full system.

The data reconstruction–evolution of the four multidimensional Riemann states Vnþ1=2
i;j;N;S;E;W (see Fig. 1) at cell boundaries1 is

achieved to second-order accuracy by using a TVD MUSCL-Hancock approach. In extrapolating the cell center values to the cell
interfaces we use a TVD slope limiter2 applied to characteristic variables.

We mention an important strategy for employing TVD limiting at this stage. The limiting is applied to the cell-centered
variables, such as density, velocity fields, and pressure, in both normal and transverse directions, while the limiting is applied
only in the transverse direction for the cell-centered magnetic fields. Hence no limiting is applied to the normal field vari-
ables and we directly use the divergence-free field values from the previous time step at the cell faces. As a consequence, the
C0 continuity of the normal component of the magnetic field at cell faces is maintained. This strategy is based on numerical
considerations to prevent undesirable jumps in the normal components of the fields at the cell boundaries. Indeed, Powell
[31] noticed that if the normal fields have jumps at the cell boundaries, the resultant cell-centered MHD formulation using a
Riemann solver becomes ill-defined. Powell et al. [32] eventually resolved this problem by introducing the 8-wave model
with modified MHD equations. In the current scheme, using the divergence-free cell face (or cell face-centered) fields, the
continuity consideration of the normal fields at the cell interfaces is met straightforwardly.

Given the quasi-linearized MHD equations,
Vnþ1=2
i;j;E;W ¼ Vn

i;j þ
1
2
�I� Dt

Dx
AxðVn

i;jÞ
� �

Dn
i �

Dt
2Dy

AyðVn
i;jÞD

n
j ; ð17Þ

Vnþ1=2
i;j;N;S ¼ Vn

i;j �
Dt

2Dx
AxðVn

i;jÞD
n
i þ

1
2
�I� Dt

Dy
AyðVn

i;jÞ
� �

Dn
j ; ð18Þ
where the plus and minus signs correspond to directions of N; E and S;W respectively, and AxðVn
i;jÞ, AxðVn

i;jÞ represent matrices
calculated at Vn

i;j, we first consider a data reconstruction–evolution in the normal direction (e.g., the first two terms in the
right hand side of (17)),
bV
Bx

" #nþ1=2;k

i;j;E;W

¼
bV
Bx

" #n

i;j

þ 1
2
�
bI 0
0 1

" #
� Dt

Dx

bAx ABx

0 0

" #n

i;j

0@ 1ADn
i ; ð19Þ
is usual, N; S; E;W are such that ðVi�1;j;E;Vi;j;W Þ are left–right pairs across the cell face located at ði� 1=2Þ, etc.
instance, one of the slope limiters such as Minmod, van Leer’s, MC, or a combination of them on different wave structures [4] can be used.



Fig. 1. The boundary extrapolated values on a 2D cell geometry. The values are subscripted by N; S; E, and W accordingly. These are used as the state values
for solving a Riemann problem at each cell interface.
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where Dn
i ¼ bDn

i ;DBn
x;i

� �T
and DBn

x;i ¼ bn
x;iþ1=2;j � bn

x;i�1=2;j (the meaning of bDn
i becoming clear shortly). The notation Bs and bs de-

note cell-centered and cell face-centered magnetic field components, respectively, with s ¼ x; y; z. In the staggered mesh CT
algorithm, DBn

x;i is constructed such that the numerical divergence is zero using the cell face-centered magnetic fields. In
other words, DBn

x;i and DBn
y;j are chosen such that
DBn
x;i

Dx
þ

DBn
y;j

Dy
¼ 0; ð20Þ
where we analogously define DBn
y;j ¼ bn

y;i;jþ1=2 � bn
y;i;j�1=2. As noted previously no TVD limiting is applied to DBn

x;i or DBn
y;j. Solving

(19) is equivalent to considering two subsystems
bVnþ1=2;k
i;j;E;W ¼ bVn

i;j þ 1
2 �bI � Dt

Dx
bAx

� �n

i;j
bDn

i � Dt
2Dx ðABx Þ

n
i;jDBn

x;i;

ðBxÞnþ1=2;k
i;j;E;W ¼ Bn

x;i;j � 1
2 DBn

x;i;

8<: ð21Þ
where the second relation in (21) becomes
ðBxÞnþ1=2;k
i;j;E;W ¼ Bn

x;i;j �
1
2

DBn
x;i ¼ bn

x;i�1=2;j; ð22Þ
if the cell-centered magnetic field is reconstructed as
Bn
x;i;j ¼

1
2
ðbn

x;iþ1=2;j þ bn
x;i�1=2;jÞ: ð23Þ
We apply the eigenstructure of the 1D based MHD equations and use characteristic information for the first two terms in the
first equation in (21),
bVnþ1=2;k
i;j;W ¼ bVn

i;j þ
1
2

X
k;kk

i;j<0

�1� Dt
Dx

kk
i;j

� �
rk

x;i;j
bDan

i �
Dt

2Dx
ðABx Þ

n
i;jDBn

x;i; ð24Þ

bVnþ1=2;k
i;j;E ¼ bVn

i;j þ
1
2

X
k;kk

i;j>0

1� Dt
Dx

kk
i;j

� �
rk

x;i;j
bDan

i �
Dt

2Dx
ðABx Þ

n
i;jDBn

x;i ð25Þ
with characteristic limiting in the normal direction,
bDan
i ¼ TVD Limiter lk

x;i;j � bDn
i;þ; l

k
x;i;j � bDn

i;�

h i
: ð26Þ
Here kk
x;i;j; r

k
x;i;j; l

k
x;i;j represent, respectively, the eigenvalue, right, and left eigenvectors of bAx, calculated at the corresponding

cell center ði; jÞ in the x-direction at time step n, and bDn
i;þ ¼ bVn

iþ1;j � bVn
i;j;
bDn

i;� ¼ bVn
i;j � bVn

i�1;j (similarly for bDn
j;�).
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One useful correction to preserve second-order accuracy in this normal update using the characteristic tracing method
has been observed by Stone et al. [18] when employing approximate Riemann solvers that are based on averaging left
and right intermediate states (e.g., the HLL-type of Riemann solvers, but not the Roe or exact Riemann solvers). A correction
becomes useful in situations where waves propagate away from the interface, e.g., at ðiþ 1=2; jÞ. In such case, both bVnþ1=2;k

i;j;E

and bVnþ1=2;k
iþ1;j;W would not have any of the predicted half time step solutions, therefore the resultant solution at nþ 1 time step

will be first-order. Taking this into consideration, when the HLL-type of Riemann solvers are used in simulation, we modify
Eqs. (24) and (25) as
bVnþ1=2;k
i;j;W ¼ bVn

i;j þ
1
2

X7

k¼1

�1� Dt
Dx

kk
i;j

� �
rk

x;i;j
bDan

i �
Dt

2Dx
ðABx Þ

n
i;jDBn

x;i; ð27Þ

bVnþ1=2;k
i;j;E ¼ bVn

i;j þ
1
2

X7

k¼1

1� Dt
Dx

kk
i;j

� �
rk

x;i;j
bDan

i �
Dt

2Dx
ðABx Þ

n
i;jDBn

x;i: ð28Þ
The next step includes the transverse flux contribution to the calculated normal state variables. This transverse step, using
the eigenstructure of the MHD equations, completes the update from the y-flux contributions, e.g., the third and second
terms in (17) and (18), respectively. For instance, in (17) the transverse step can be updated as
Vnþ1=2
i;j;E;W ¼ Vnþ1=2;k

i;j;E;W � Dt
2Dy

AyðVn
i;jÞD

n
j : ð29Þ
Again, this can be written as
bV
By

" #nþ1=2

i;j;E;W

¼
bV
By

" #nþ1=2;k

i;j;E;W

� Dt
2Dy

bAy ABy

0 0

" #n

i;j

Dn
j ; ð30Þ
which reduces to solve just one subsystem,
bVnþ1=2
i;j;E;W ¼ bVnþ1=2;k

i;j;E;W � Dt
2Dy
ðbAyÞni;j bDn

j �
Dt

2Dy
ðABy Þ

n
i;jDBn

y;j: ð31Þ
Using the eigensystem at the cell center ði; jÞ in the y-direction, we get,
bVnþ1=2
i;j;E;W ¼ bVnþ1=2;k

i;j;E;W � Dt
2Dy

X7

k¼1

kk
y;i;jr

k
y;i;j
eDan

j �
Dt

2Dy
ðABy Þ

n
i;jDBn

y;j; ð32Þ
where an upwinding slope eDan
j ¼ Upwinding lk

y;i;j � bDn
j;þ; l

k
y;i;j � bDn

j;�

h i
is given by
eDan
j ¼

lk
y;i;j � bDn

j;þ if kk
y;i;j < 0;

lk
y;i;j � bDn

j;� if kk
y;i;j > 0:

8<: ð33Þ
Note that in (32) we sum over contributions from all waves for the transverse fluxes. This can be viewed in general, via sim-
ple consideration of jumps across waves. Given eigenvalues kk, k ¼ 1; . . . ;7, ordered as
k1
6 � � � 6 0 6 kk0

6 � � � 6 kk; k0 6 k; ð34Þ
the property of conservation across discontinuities of the Roe matrices bAx and bAy in (11) and (12) gives (dropping indices and
using left and right terminologies for convenience),
bAbD ¼ bAðbVr � bV lÞ ¼ FluxðVrÞ � FluxðVlÞ: ð35Þ
As the left and right states are related via a simple jump relationship,
bA bV l þ
Xk0�1

k¼1

kkrk eDa ¼ bA bVr �
X7

k¼k0

kkrk eDa; ð36Þ
we see that the sum over all wave contributions gives an effective upwinding of transverse flux gradients. Note, in (24) and
(25), however, we restrict the wave contributions on the physical consideration of the left- and right-going waves separately
using a characteristic tracing method (see [8]).

Thus far we have obtained four Riemann states Vnþ1=2
i;j;N;S;E;W that are second-order accurate at nþ 1=2 time step for all vari-

ables except the normal fields at each cell interface (boundary). We require two conditions in obtaining such normal fields: a
continuity restriction across cell interfaces and the divergence-free constraint. Maintaining the continuity requirement of
the normal fields at the interfaces has been previously recognized as an important issue in the MHD Riemann problem
[4,9,16,31]. This requirement is essential for physical consistency. Computationally, allowing jumps in the normal fields
at the cell interfaces can lead to more diffusive solutions to Riemann problems stemming from the upwinding procedure
in the Riemann solvers. For the transverse components of the magnetic field, however, discontinuities are allowed and medi-
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ate the proper upwinding for them. As a last step, therefore, we evolve the normal field components at each cell boundary by
a half time step, following the CT approach using the high-order Godunov fluxes that are solutions to a Riemann problem (RP
for short) of the above Riemann states Vnþ1=2

i;j;N;S;E;W . Practically, we first solve� � � �
eF�;nþ1=2
i�1=2;j ¼ RP Vnþ1=2

i�1;j;E;V
nþ1=2
i;j;W ; eF�;nþ1=2

iþ1=2;j ¼ RP Vnþ1=2
i;j;E ;Vnþ1=2

iþ1;j;W ð37Þ
and
 eG�;nþ1=2
i;j�1=2 ¼ RP Vnþ1=2

i;j�1;N ;V
nþ1=2
i;j;S

� �
; eG�;nþ1=2

i;jþ1=2 ¼ RP Vnþ1=2
i;j;N ;Vnþ1=2

i;jþ1;S

� �
: ð38Þ
Based on these fluxes at the half time step we update the normal fields by a half time step as
bnþ1=2
x;iþ1=2;j ¼ bn

x;iþ1=2;j �
Dt

2Dy
eEnþ1=2

z;iþ1=2;jþ1=2 � eEnþ1=2
z;iþ1=2;j�1=2

n o
; ð39Þ

bnþ1=2
y;i;jþ1=2 ¼ bn

y;i;jþ1=2 �
Dt

2Dx
�eEnþ1=2

z;iþ1=2;jþ1=2 þ eEnþ1=2
z;i�1=2;jþ1=2

n o
; ð40Þ
where the duality relationship between the electric fields (e.g., eEnþ1=2
z ) and the high-order Godunov fluxes (e.g., eF�; eG�) are

assumed and will be described in more detail in the next section (e.g., see (47)). These normal fields satisfy the diver-
gence-free constraint as well as the continuity restriction across cell interfaces as they are direct solutions to numerical
induction equations via the CT approach. Given these fields we update the previously obtained four Riemann states as
Vnþ1=2
i;j;N � eBy ¼ bnþ1=2

y;i;jþ1=2; Vnþ1=2
i;j;S � eBy ¼ bnþ1=2

y;i;j�1=2; ð41Þ

Vnþ1=2
i;j;E � eBx ¼ bnþ1=2

x;iþ1=2;j; Vnþ1=2
i;j;W � eBx ¼ bnþ1=2

x;i�1=2;j; ð42Þ
where e are unit vectors for the magnetic field components, respectively.
The algorithm for our Riemann state data reconstruction–evolution is based on the method of multidimensional charac-

teristic analysis that can be achieved in a single step, without solving a separate Riemann problem for transverse flux gra-
dients. The importance of the present scheme lies in the fact that the multidimensional MHD terms are included and
balanced simultaneously in the quasi-linearized form of the MHD equations in a consistent way using the characteristic
analysis for both normal and transverse flux gradients. It is also evident that the extension to 3D is straightforward: for in-
stance, we only need to add additional upwinding transverse flux gradient from z-direction (e.g.,

P7
k¼1k

k
z rk

z
eDan) along with

the multidimensional MHD term in z-direction (e.g., An
Bz

DBn
z ) in Eq. (32).

Note that a typical unsplit CTU scheme in multidimensions, originally by Colella [8], would need to solve four Riemann
problems in 2D and 12 in 3D [37] per zone per time step. In 2D MHD one recent approach to obtain second-order accurate
approximations of the transverse flux derivatives can be found in [9]. There the transverse predictor updating step used the
normal predictor step values to solve another intermediate Riemann problem. The resulting interface fluxes were then used
to take numerical derivatives, completing their data reconstruction–evolution of the Riemann states in the predictor step.
More recently, Gardiner and Stone generalized a new 3D CTU scheme for MHD that only involves six Riemann problems [17].

The current data reconstruction–evolution method, which accommodates the MHD eigenstructure multidimensionally in
a single step, is simpler and computationally less expensive in evaluating the transverse flux gradients. The characteristic
method is mathematically consistent with the quasi-linearized system of MHD equations, and causes no loss of stability
for appropriately chosen Courant numbers. Along with the current data reconstruction–evolution algorithm, the overall inte-
gration scheme requires the solution of four Riemann problems in 2D and six in 3D. Details of the 3D implementation will
appear in a future paper.

Turning back to the practical significance of our data reconstruction–evolution algorithm, the most desirable aspect can
be seen in that the multidimensional MHD terms ABx and ABy are included such that they are proportional to DBx;i=Dx and
DBy;j=Dy. These derivatives are computed using the cell face magnetic fields that are divergence-free from the CT-type for-
mulation in the USM scheme. This fact implies that the quantities u;v;w;Bz; p are all evolved proportional to the sum
DBx;i
Dx þ

DBy;j

Dy , which is vanishingly small numerically (see (20)). As a result, this dependence has an important meaning: if per-
turbations to the divergence DBx;i

Dx þ
DBy;j

Dy were to be introduced, such perturbation would affect the behavior of all of
u;v;w;Bz; p. For example, as noted by Gardiner and Stone [16], maintaining planar dynamics in 2D MHD problems by not
allowing erroneous growth of the Bz component is directly dependent on how the terms DBx;i=Dx and DBy;j=Dy are handled
in the data reconstruction–evolution step. In the current multidimensional data reconstruction–evolution algorithm such
growth in Bz is avoided, and its success is illustrated in the in-plane field loop advection test in Section 5.

Now that the second-order accurate Riemann states, Vnþ1=2
i;j;N;S;E;W , are available, the second-order Godunov fluxes can be eval-

uated by solving Riemann problems at cell interfaces. That is,
F�;nþ1=2
i�1=2;j ¼ RP Vnþ1=2

i�1;j;E;V
nþ1=2
i;j;W

� �
; F�;nþ1=2

iþ1=2;j ¼ RP Vnþ1=2
i;j;E ;Vnþ1=2

iþ1;j;W

� �
; ð43Þ

G�;nþ1=2
i;j�1=2 ¼ RP Vnþ1=2

i;j�1;N ;V
nþ1=2
i;j;S

� �
; G�;nþ1=2

i;jþ1=2 ¼ RP Vnþ1=2
i;j;N ;Vnþ1=2

i;jþ1;S

� �
: ð44Þ
Note that the superscript � is used to represent the second-order Godunov fluxes that are the solutions of the Riemann
problems.
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2.2. The USM cell-centered solution update

The algorithm updates the cell-centered conservative variables to the next time step nþ 1 using an unsplit integrator,
Unþ1
i;j ¼ Un

i;j �
Dt
Dx

F�;nþ1=2
iþ1=2;j � F�;nþ1=2

i�1=2;j

n o
� Dt

Dy
G�;nþ1=2

i;jþ1=2 � G�;nþ1=2
i;j�1=2

n o
: ð45Þ
In general, after this update, non-zero divergence magnetic fields are still present at cell centers, and they need to be cor-
rected. In the next section we describe a new modified electric field construction (MEC) scheme which is used in the CT
algorithm for the discrete induction equations to keep the cell face magnetic fields divergence-free numerically. The cell-
centered magnetic fields are then corrected using these cell face fields.

The choice of a time step Dt for our unsplit scheme is limited by a CFL condition (in 2D),
Dt
kmax

x;i;j

��� ���
Dx

;
kmax

y;i;j

��� ���
Dy

0@ 1A 6 c: ð46Þ
We use a CFL number, c ¼ 0:8 for all calculations, except where otherwise noted.

3. Construction of electric fields

A new modified electric field construction (MEC) scheme that retains full directional information is introduced and stud-
ied in this section. The MEC scheme is obtained by using the second-order accurate Godunov fluxes that are available from
the data reconstruction–evolution scheme in Section 2. Taylor expansions are applied to the flux components of the mag-
netic fields (or electric fields by the duality relationship [2]) at the face centers to obtain extrapolations at each cell corner
where the electric field is collocated. The electric fields at cell corners are then used in the discrete induction equations to
evolve divergence-less magnetic fields at cell faces.

3.1. Simple electric field averaging scheme

The CT based scheme requires the evaluation of the electric field E. Balsara and Spicer [2] proposed to evaluate the electric
field on a staggered mesh using the duality relationship between the electric fields and high-order Godunov fluxes and tak-
ing a simple arithmetic average over the cell face-centered fluxes
Enþ1=2
z;iþ1=2;jþ1=2 ¼

1
4
�F�;nþ1=2

6;iþ1=2;j � F�;nþ1=2
6;iþ1=2;jþ1 þ G�;nþ1=2

5;i;jþ1=2 þ G�;nþ1=2
5;iþ1;jþ1=2

n o
¼ 1

4
E�;nþ1=2

z;iþ1=2;j þ E�;nþ1=2
z;iþ1=2;jþ1 þ E�;nþ1=2

z;i;jþ1=2 þ E�;nþ1=2
z;iþ1;jþ1=2

n o
: ð47Þ
The subscripts 6 and 5 denote the sixth and fifth components in the corresponding flux vectors in Eq. (9), and the superscript
� denotes the fluxes (or flux components) directly from the high-order Godunov schemes. See Fig. 2 for the staggered mesh
arrangement in 2D.

The electric field Ez in Eq. (47) can be used to update the induction equations in an appropriate discretization in different
MHD solvers. To discretize the induction equations in a more general sense, we consider integrating the differential form (1)
over a single 3D control volume i� 1

2 ; iþ 1
2

	 

� j� 1

2 ; jþ 1
2

	 

� k� 1

2 ; kþ 1
2

	 

in a Cartesian staggered grid. Taking a surface inte-

gral of the induction equations and applying Stokes’ theorem yields
bn
g ¼

1
AðF ‘Þ F ‘

Bg dA; Enþ1=2
s ¼ 1

LðoF ‘Þ

Z
oF ‘

Es dl; ð48Þ
where A and L are the respective area and length and g; s ¼ x; y; z, with the six bounding faces F ‘, ‘ ¼ 1; . . . ;6. Note that in the
CT formulation the magnetic field components bn

g are the area-averaged values at cell faces, whereas the rest of the conser-
vative variables such as the density, momentum, and energy are volume-averaged quantities. Using (48) it is straightforward
to rewrite the induction equations at each control volume’s face in component-wise form as
DyDz
o

ot
bn

x;i�1
2;j;k
¼ � Dz Enþ1=2

z;i�1
2;jþ

1
2;k
� Enþ1=2

z;i�1
2;j�

1
2;k

� �
þ Dy Enþ1=2

y;i�1
2;j;k�

1
2
� Enþ1=2

y;i�1
2;j;kþ

1
2

� �n o
; ð49Þ

DxDz
o

ot
bn

y;i;j�1
2;k
¼ � Dz Enþ1=2

z;i�1
2;j�

1
2;k
� Enþ1=2

z;iþ1
2;j�

1
2;k

� �
þ Dx Enþ1=2

x;i;j�1
2;kþ

1
2
� Enþ1=2

x;i;j�1
2;k�

1
2

� �n o
: ð50Þ
Further, by discretizing the temporal derivative terms and dividing out Dx;Dy, and Dz, we obtain discrete form of the induc-
tion equations on the staggered grid. For instance, in 2D, we get the original Yee’s method [42] by applying the forward tem-
poral discretization
bnþ1
x;iþ1=2;j ¼ bn

x;iþ1=2;j �
Dt
Dy

Enþ1=2
z;iþ1=2;jþ1=2 � Enþ1=2

z;iþ1=2;j�1=2

n o
; ð51Þ

bnþ1
y;i;jþ1=2 ¼ bn

y;i;jþ1=2 �
Dt
Dx
�Enþ1=2

z;iþ1=2;jþ1=2 þ Enþ1=2
z;i�1=2;jþ1=2

n o
: ð52Þ



Fig. 2. A schematic 2D geometry of the staggered mesh in the flux-CT finite volume scheme. In the staggered mesh, the upwinded numerical fluxes F� and
G� are collocated at the centers of cell interfaces and the electric fields E (only Ez is shown here for 2D) are collocated at the cell corners.
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Most CT schemes [2–4,16,17] essentially make the above discretization. On a staggered grid, the numerical divergence of B is
defined by
ðr � BÞnþ1
i;j ¼

bnþ1
x;iþ1=2;j � bnþ1

x;i�1=2;j

Dx
þ

bnþ1
y;i;jþ1=2 � bnþ1

y;i;j�1=2

Dy
ð53Þ
and it remains zero to machine round-off, provided that ðr � BÞni;j ¼ 0.

3.2. MEC algorithm using directional derivatives in the electric field construction

We now describe a new electric field construction scheme that uses first- and second-order directional derivatives eval-
uated at cell faces to extrapolate the electric fields to cell corners. The cell face electric fields are available from correspond-
ing components of the high-order Godunov fluxes that are solutions to the Riemann problem. The superscript ‘‘�” is used,
consistent with the previous section.

Using a Taylor series expansion of the cell-cornered electric field Enþ1=2
z;iþ1=2;jþ1=2 in all directions, we can write
Enþ1=2
z;iþ1=2;jþ1=2 ¼ E�;nþ1=2

z;iþ1=2;j þ
Dy
2

oE�;nþ1=2
z;iþ1=2;j

oy þ Dy2

8

o2E�;nþ1=2
z;iþ1=2;j

oy2 þOðDy3Þ;

Enþ1=2
z;iþ1=2;jþ1=2 ¼ E�;nþ1=2

z;iþ1=2;jþ1 �
Dy
2

oE�;nþ1=2
z;iþ1=2;jþ1

oy þ Dy2

8

o2E�;nþ1=2
z;iþ1=2;jþ1

oy2 þOðDy3Þ;

Enþ1=2
z;iþ1=2;jþ1=2 ¼ E�;nþ1=2

z;i;jþ1=2 þ Dx
2

oE�;nþ1=2
z;i;jþ1=2

ox þ Dx2

8

o2E�;nþ1=2
z;i;jþ1=2

ox2 þOðDx3Þ;

Enþ1=2
z;iþ1=2;jþ1=2 ¼ E�;nþ1=2

z;iþ1;jþ1=2 � Dx
2

oE�;nþ1=2
z;iþ1;jþ1=2

ox þ Dx2

8

o2E�;nþ1=2
z;iþ1;jþ1=2

ox2 þOðDx3Þ:

8>>>>>>>>><>>>>>>>>>:
ð54Þ
The new modified electric field construction (MEC) algorithm takes an arithmetic average of these four Taylor expansions,
yielding
Enþ1=2
z;iþ1=2;jþ1=2 ¼

1
4

E�;nþ1=2
z;iþ1=2;j þ

Dy
2

oE�;nþ1=2
z;iþ1=2;j=oy

� �
þ Dy2

8
o2E�;nþ1=2

z;iþ1=2;j=oy2
� �

þ E�;nþ1=2
z;iþ1=2;jþ1 �

Dy
2

oE�;nþ1=2
z;iþ1=2;jþ1=oy

� ��
þ Dy2

8
o2E�;nþ1=2

z;iþ1=2;jþ1=oy2
� �

þ E�;nþ1=2
z;i;jþ1=2 þ

Dx
2

oE�;nþ1=2
z;i;jþ1=2=ox

� �
þ Dx2

8
o2E�;nþ1=2

z;i;jþ1=2=ox2
� �

þ E�;nþ1=2
z;iþ1;jþ1=2

�Dx
2

oE�;nþ1=2
z;iþ1;jþ1=2=ox

� �
þ Dx2

8
o2E�;nþ1=2

z;iþ1;jþ1=2=ox2
� ��

: ð55Þ
The inclusion of the directional derivative terms at this stage has several important aspects. In the CT-type of schemes the
magnetic fields (surface variables) are evolved by solving the discretized induction equations (e.g., Eqs. (51) and (52)),
whereas other conservative (volumetric) variables such as the density, momentum, and energy are updated by solving
the underlying high-order Godunov scheme. These two sets of variables are updated differently, which does not mean that
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the surface and volumetric variables form two decoupled systems; rather, they are strongly coupled via the momentum, en-
ergy, and induction equations. Therefore, in order to obtain an overall accurate solution for both surface and volumetric vari-
ables they must be evaluated with consistent high-order accuracy. The derivative terms in Eq. (55) provide the needed
accuracy as compared to the simple averaging scheme of Eq. (47).

The MEC algorithm in (55) is ideally third-order in space for smooth profiles of the electric fields. Note that the simple
averaging scheme (47) only incorporates the smooth part of the electric fields by taking simple arithmetic averages of the
electric field components at cell faces. The situation is improved in the MEC algorithm in such a way that the first derivative
terms reflect correct spatial changes from the cell centers to the cell corners. Furthermore, the second derivative terms add
proper amounts of dissipation to the extrapolated cell-cornered electric fields, avoiding spurious oscillations near disconti-
nuities in solutions.

The MEC does not lead to a 1D form for grid-aligned plane–parallel flows. This can be important, shown in [16], as a lack
of this property can lead to a lowering of numerical dissipation and hence introduce possible numerical instability. However,
the amount of dissipation in our MEC algorithm, integrated in the whole USM scheme, is controlled adequately as shown in
our tests such as the field loop advection. For plane–parallel flows, we explicitly tested such as the grid-aligned Brio–Wu
shock tube or Alfvén wave propagation problems on 2D domains, and we have not found any instability issue in the results.

In discretizing the derivative terms in the MEC algorithm, two different approaches can be easily considered: central or
upwinded differencing. For our purpose, we choose to use a central scheme for two reasons. First, an upwinded differencing
requires a wider stencil (one more stencil point for each spatial direction) than a central differencing. The wider stencil
means that more guard (or ghost) cells must be used for an upwinded differencing scheme, which is particularly a problem
for parallel AMR grid structures where guard cells are used for boundary conditions and updated via inter-processor com-
munications. Further, in multidimensions, extra guard cells require either more storage or more guard cell copy operations.
For high levels of refinement this extra overhead can be a crucial issue. Second, an upwinding strategy becomes useful when
that is used to obtain the direction of the propagation information in a flow field along the characteristics. The electric fields
in ideal MHD, E ¼ �u� B, nevertheless, do not propagate along the direction parallel to the velocity field, nor to the mag-
netic field. Gardiner and Stone [16] proposed an upwinded differencing according to the contact mode at each interface,
which led to a stable, non-oscillatory integration algorithm. However, having implemented both alternatives we do not find
any improvement in the solution using upwinded over central differencing. Thus for physical considerations as well for com-
putational parallel efficiency, we choose a central differencing for discretizing the derivative terms in the MEC algorithm.

3.3. Central differencing for the MEC

A second-order central differencing is considered for both first and second derivative terms in the MEC algorithm. At x-
interfaces (e.g., at i� 1

2), we can discretize oE�;nþ1=2
z;i�1=2;j=oy and o2E�;nþ1=2

z;i�1=2;j=oy2 as
oE�;nþ1=2
z;i�1=2;j

oy
¼

E�;nþ1=2
z;i�1=2;jþ1 � E�;nþ1=2

z;i�1=2;j�1

2Dy
ð56Þ
and
o2E�;nþ1=2
z;i�1=2;j

oy2 ¼
E�;nþ1=2

z;i�1=2;jþ1 � 2E�;nþ1=2
z;i�1=2;j þ E�;nþ1=2

z;i�1=2;j�1

Dy2 : ð57Þ
Similarly, discretizations at y-interfaces (e.g., at j� 1
2) are
oE�;nþ1=2
z;i;j�1=2

ox
¼

E�;nþ1=2
z;iþ1;j�1=2 � E�;nþ1=2

z;i�1;j�1=2

2Dx
ð58Þ
and
o2E�;nþ1=2
z;i;j�1=2

ox2 ¼
E�;nþ1=2

z;iþ1;j�1=2 � 2E�;nþ1=2
z;i;j�1=2 þ E�;nþ1=2

z;i�1;j�1=2

Dx2 : ð59Þ
These derivatives are used in (55) and the subsequent electric fields are applied to the induction equations (51) and (52) for
temporal evolutions of the divergence-free magnetic fields at cell interfaces (face centers).

4. Summary

We summarize the whole USM–MEC algorithm as follows:

(i) Calculate the second-order accurate MHD interfaces using the data reconstruction–evolution algorithm described in
Section 2.1. The multidimensional MHD terms are included to balance terms that are proportional to r � B ¼ 0. The
resulting MHD interface states are used to compute the first set of high-order Godunov fluxes by solving a Riemann
problem (Eqs. (37) and (38) in Section 2.1).
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(ii) The normal fields are evolved by a half time step at cell interfaces using the Godunov fluxes in step (i) (Eqs. (39) and
(40) in Section 2.1).

(iii) Update the MHD interface states in step (i) with the calculated normal fields in step (ii) (Eqs. (41) and (42) in Section
2.1).

(iv) Solve the second set of Riemann problems at cell interfaces (Eqs. (43) and (44) in Section 2.1) and update the cell-cen-
tered conservative variables to the next time step (Eq. (45) in Section 2.2).

(v) Calculate the electric fields at cell corners by using the MEC algorithm described in Section 3.2. Using these electric
fields the magnetic fields at cell faces are updated to the next time step (Eqs. (51) and (52) in Section 3.1). The
cell-centered magnetic fields are updated using these divergence-free magnetic fields at cell face centers (e.g., Eq.
(23) in Section 2.1).
5. Numerical results

Numerical studies of the USM–MEC scheme have been made with a suite of MHD test problems. These studies show that
the scheme is very robust and second-order accurate, and maintains the solenoidal constraint of magnetic fields up to ma-
chine round-off error. The CFL number of 0.8 is used in all simulations. For the choice of the Riemann solvers we used the
Roe-type linearized solver [33,39] and the HLLD solver [28].

In all of the multidimensional problems presented here, we demonstrate the excellent performance of the USM–MEC
scheme, especially with: (a) our new multidimensional characteristic method in the data reconstruction–evolution step that
truly combines multidimensional MHD terms in a single step (thus, obeying a perfect balance law of r � B ¼ 0); (b) an im-
proved solution accuracy using the MEC scheme. Their roles are pointed out and found to be of importance.

5.1. Field loop problem

The first test is the field loop problem which is known to be one of stringent test cases in multidimensional MHD. In this
test problem we consider an advection of a weakly magnetized field loop traversing the computational domain diagonally.
Details of the problem has been described in [16] and we briefly discuss our setup here. We follow the parameters of Gard-
iner and Stone [16,38]. The computational domain is ½�1;1� � ½�0:5;0:5�, with a grid resolution 256� 148, and doubly-peri-
odic boundary conditions. With this rectangular grid cell, the flow is not symmetric in x- and y-directions because the field
loop does not advect across each grid cell diagonally and hence the resulting fluxes are different in x- and y-directions. The
density and pressure are unity everywhere and c ¼ 5=3. The velocity fields are defined as
U ¼ u0ðcos h; sin h;1Þ ð60Þ
with the advection angle h, given by h ¼ tan�1ð0:5Þ 	 26:57
. For the choice of the initial advection velocity we set u0 ¼
ffiffiffi
5
p

.
The size of domain and other parameters were chosen such that the weakly magnetized field loop makes one complete cycle
by t ¼ 1. It is important to initialize the magnetic fields to satisfyr � B ¼ 0 numerically in order to avoid any initial non-zero
error in r � B. As suggested in [16], the magnetic field components are initialized by taking the numerical curl of the z-com-
ponent of the magnetic vector potential Az,
Bx ¼
oAz

oy
; By ¼ �

oAz

ox
; ð61Þ
where
Az ¼
A0ðR� rÞ if r 6 R;

0 otherwise:

�
ð62Þ
By using this initialization process, divergence-free magnetic fields are constructed with a maximum value of r � B in the
order of 10�16 at the chosen resolution. The parameters in (62) are A0 ¼ 10�3 and a field loop radius R ¼ 0:3. This initial con-
dition results in a very high plasma beta b ¼ p=Bp ¼ 2� 106 for the inner region of the field loop. Inside the loop the magnetic
field strength is very weak and the flow dynamics is dominated by the gas pressure.

The field loop advection is integrated to a final time t ¼ 2. The advection test is found to truly require the full multidi-
mensional MHD approach, i.e., the inclusion of the multidimensional MHD terms (15) and (16) as described in Section
2.1. Since the field loop is advected at an oblique angle to the x-axis of the computational domain, the values of oBx=ox
and oBy=oy are non-zero in general and their roles are crucial in multidimensional MHD flows. These terms, together with
the multidimensional MHD terms ABx and ABy , are explicitly included in our data reconstruction–evolution algorithm. During
the advection a good numerical scheme should maintain: (a) the circular symmetry of the loop at all time: a numerical
scheme that lacks proper numerical dissipation results in spurious oscillations at the loop, breaking the circular symmetry;
(b) Bz ¼ 0 during the simulation: Bz will grow proportional to wr � BDt if a numerical scheme does not properly include mul-
tidimensional MHD terms.

From the results in Fig. 3, the USM–MEC scheme maintains the circular shape of the loop extremely well to the final time
step. The scheme successfully retains the initial circular symmetry and does not develop severe oscillations as indicated in
plots (a) and (c). However, in the absence of proper dissipation in the simple electric field averaging scheme in Eq. (47) (i.e.,



Fig. 3. The field loop advection problem at time t ¼ 2 using the Roe Riemann solver. The same color scheme between 2:32� 10�25 and 7:16� 10�7 was used
for both (a) and (b). 20 contour lines of Az between �2:16� 10�6 and 2:7� 10�4 are shown in (c) and (d).
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without using the MEC), the result shows the development of strong numerical oscillations in the field loop as illustrated in
plot (b); the associated field lines got distorted and even reconnected forming a big magnetic island in the direction opposite
to the advection. Note also that the overall shape of the field lines in (d) has turned oblong, in contrast to (c) where the cir-
cular symmetry is preserved well.

Another important issue in the field loop advection problem is to examine the in-plane dynamics for 2D MHD flows. With
our choice of the non-zero velocity field w ¼ 1 in (60), we consider the Bz component of the induction equation,
oBz

ot
þ Bz

ou
ox
� Bx

ow
ox
�w

oBx

ox
þ u

oBz

ox
þ Bz

ov
oy
� By

ow
oy
�w

oBy

oy
þ v oBz

oy
¼ 0: ð63Þ
The fourth and eighth terms in Eq. (63) are the multidimensional MHD terms that were taken care of in the data reconstruc-
tion–evolution step in the unsplit fashion. The sum of these two is wr � B ¼ wðDBx;i=Dxþ DBy;j=DyÞ, and hence if there is any
secular growth in ther � B ¼ ðDBx;i=Dxþ DBy;j=DyÞ error, it will change the in-plane geometry due to an unphysical growth of
Bz with a rate proportional to wr � BDt. For dimensionally-split MHD schemes, this kind of unphysical growth is hard to
avoid, since the terms DBx;i=Dx and DBy;j=Dy are not updated simultaneously.

As the USM–MEC scheme maintainsr � B to machine precision, at time t ¼ 2, Bz is of amplitude � 10�28 and appears fea-
tureless with just small scale noise. This result indicates that the scheme does indeed correctly maintain the in-plane geom-
etry without causing an unphysical growth of the out-of-plane field.

5.2. Circularly polarized Alfvén wave

In the next test we solve the circularly polarized Alfvén wave and its propagation [40] in order to check the accuracy of
the USM–MEC scheme. The Alfvén wave propagates at an oblique angle to the x-axis of the computational domain. This test
problem is very useful as a diagnostic of the solution’s accuracy because the smooth initial conditions are nonlinear solutions
to the problem, and many authors have chosen this problem for testing their scheme’s solution accuracy [18,23]. It is also of
particular relevance to astrophysical phenomena because the propagation of Alfvén waves in the solar wind is thought to be
a possible source for the heating of the solar corona. Hence their accurate modeling is crucial. Further, departures from pure
Alfvénic modes are a measure of the interaction of these waves with the solar wind [19,36].

The initial conditions we use are the same as the equivalent test problems described in [16]. A computational domain
with a doubly-periodic box ½0;1= cos h� � ½0;1= sin h� is determined according to the propagation angle h, and the value we
adopt is h ¼ tan�1ð2Þ 	 63:44
. In this configuration, flux terms involving oBx=ox and oBy=oy are non-zero throughout the do-
main and their contributions to the solution, especially the magnetic fields, are essential in this problem. For the convergence
study we simulated both standing and traveling Alfvén waves.
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The grid resolutions used for this problem are 2N � N with N ¼ 8;16;32;64, and 128. At time t ¼ 0, the density q ¼ 1 and
the gas pressure p ¼ 0:1 are set uniformly on the domain with c ¼ 5=3. The propagation of the circularly polarized Alfvén
wave can be described in a rotated coordinate system n ¼ RzðhÞx, so that
Fig. 4.
linear r
B ¼ ðBn;Bg; BfÞ ¼ ð1; 0:1 sin 2pn; 0:1 cos 2pnÞ: ð64Þ
Similarly, the velocity fields are
U ¼ Un;Ug;Uf

� �
¼
ð0;0:1 sin 2pn;0:1 cos 2pnÞ traveling wave;
ð1;0:1 sin 2pn; 0:1 cos 2pnÞ standing wave:

�
ð65Þ
In both the standing and traveling cases the Alfvén wave is propagating in the n-direction. As suggested in [16] we take
numerical curls of the z-component of the magnetic vector potential Az to assign in-plane magnetic fields Bn and Bg,
Bn ¼
oAz

og
; Bg ¼ �

oAz

on
: ð66Þ
From this we integrate Bn;�Bg with respect to g; n, respectively, and sum them to get Az. We then proceed to take numerical
derivatives of Az with respect to x; y to get Bx and By, respectively. The resulting fields are numerically divergence-free in-
plane magnetic fields.

Note that in the standing wave case, the propagating Alfvén wave speed, cA ¼ jBnj=
ffiffiffiffiqp , and the fluid velocity Un are unity,

and hence the wave moves with the flow, effectively remaining still in the computational frame.
Fig. 4 shows the numerical errors on a logarithmic scale obtained with different grid resolutions. For each case, the L1

error of the quantities qn
k at t ¼ 5 (i.e., after propagating five wavelengths) is calculated with respect to the initial condition,
dqk ¼
1

2N2

X
i

X
j

jqn
k;i;j � q0

k;i;jj; ð67Þ
by taking a sum over all cell-centered values. The errors are summed over all kth primitive variables p;q;u;v ;Bx;By and we
compute the L1 error jjdqjj ¼

P6
k¼1jdqkj. Fig. 4 shows a second-order convergence rate of the USM–MEC scheme for the

smooth Alfvén wave problem.
The reduction of errors can also be seen in Fig. 4 when using the MEC scheme (labeled as ‘‘USM–MEC”) as compared to the

case without using the MEC (labeled as ‘‘USM”), especially in the traveling wave case (labeled as ‘‘TW”). This convergence
test confirms that the derivative terms in the MEC scheme enhance the solution accuracy by resolving errors from both dis-
sipation and dispersion.

5.3. Orszag–Tang problem

The third test problem is the Orszag–Tang MHD vortex problem [29]. This test problem is widely used in the literature
and serves as a good verification test for 2D MHD where nonlinear steepening builds strong discontinuities from smooth ini-
tial conditions. The computational domain is ½0;1� � ½0;1�, with a grid resolution of N � N. The initial condition is given by
sinusoidal waves,
U ¼ u0ð� sin py; sin 2px;0Þ; B ¼ B0ð� sinpy; sin 4px; 0Þ; ð68Þ
1

The circularly polarized Alfvén wave convergence rate for both the standing (labeled as ‘‘SW”) and traveling (labeled as ‘‘TW”) wave problems. Two
ates, labeled as ‘‘first-order” and ‘‘second-order”, are shown as reference rates. The Roe Riemann solver was used for calculations.
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where B0 is chosen so that the ratio of the gas pressure to the rms magnetic pressure is equal to 2c, with c ¼ 5=3. The initial
density, speed of sound and u0 are set to unity, and therefore both the initial pressure and B0 are set to 1=c. Periodic boundary
conditions are used everywhere. The density contour plots on a 400� 400 grid size at times t ¼ 0:5 and 1.0 are shown in
Fig. 5. The plots show that the initially smooth flow has developed complicated structures involving numerous
discontinuities.

5.4. Rotor problem

The rotor problem [2,40] is initialized on a domain of a unit square ½0;1� � ½0;1� with non-reflecting boundary conditions
on all four sides. The initial condition is given by
q ¼
10 for r 6 r0;

1þ 9f ðrÞ for r0 < r < r1;

1 for r P r1;

8><>: ð69Þ

u ¼
�f ðrÞu0ðy� 0:5Þ=r0 for r 6 r0;

�f ðrÞu0ðy� 0:5Þ=r for r0 < r < r1;

0 for r P r1;

8><>: ð70Þ

v ¼
f ðrÞu0ðx� 0:5Þ=r0 for r 6 r0;

f ðrÞu0ðx� 0:5Þ=r for r0 < r < r1;

0 for r P r1;

8><>: ð71Þ

p ¼ 1; Bx ¼
5ffiffiffiffiffiffi
4p
p ; By ¼ 0; ð72Þ
where r0 ¼ 0:1; r1 ¼ 0:115; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
;w ¼ Bz ¼ 0, and a taper function f ðrÞ ¼ ðr1 � rÞ=ðr � r0Þ. The value

c ¼ 1:4 is used. The initial set-up is occupied by a dense rotating disk at the center of the domain, surrounded by ambient
gas at rest with the uniform density and pressure. The rapidly spinning rotor is not in an equilibrium state due to centrifugal
forces, and as the rotor spins with the given rotating velocity, the initially uniform magnetic fields in x-direction wind up the
rotor. As the magnetic fields wrap around the rotor, torsional Alfvén waves are launched subsequently into the ambient gas
until the angular momentum of the rotor is diminished at later times. The circular rotor is progressively compressed into an
oval shape by the build-up of the magnetic pressure around the rotor.

Shown in Fig. 6 are the contour plots of the (a) density, (b) gas pressure, (c) Mach number, and (d) magnetic pressure at
the final time t ¼ 0:15 on a grid resolution 400� 400 using the HLLD Riemann solver. For all cases (a)–(d), 30 equally spaced
contour lines are plotted. By this final time, we can see in (d) that the Alfvén waves have almost reached the boundary. One
of the important features of this rotor test problem is the maintenance of smooth contour profiles in the central part of the
Mach number profile [40]. A scheme that produces undershoots in the pressure and correspondingly the sound speed, will
result in spurious peaks in the Mach number, especially in the central region. A distortion of the oval contour lines is a sig-
nature of a relatively poor performance of a scheme. The USM–MEC scheme shows excellent behavior as illustrated in (c)
where such distortions are absent and the rotor possesses smooth contours.
Fig. 5. The density contour plot of the Orszag–Tang problem at a resolution of 400� 400 using the Roe Riemann solver.
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For a comparison at the low resolution used in Tóth [40], the Mach number on a 100� 100 resolution is computed and
shown in Fig. 7. In Fig. 20 of [40], seven different Mach number plots were obtained from seven different MHD schemes at
the same resolution and compared with each other. Those results can be compared with our plot (b) of Fig. 7. Our low res-
olution result appears to be among the best presented in [40], indicating that the present scheme is more accurate and reli-
able than many of the schemes tested by this author.

In the work of Londrillo and Del Zanna [26], a similar rotor problem was presented with minor changes in the flow param-
eters. While their results appear convincing, the divergence of the magnetic fields as shown reaches values up to the order of
10�4 on their 240� 240 resolution calculation. The USM–MEC scheme, however, keeps this value to the order of 10�13 (even
with this low resolution of size 100� 100).

5.5. Cloud and shock interaction

In the next test problem we consider the interaction of a high density cloud with a strong shock wave. This problem, also
known as the Dai and Woodward’s cloud–shock problem [11], has been studied in several papers [24,40] to test the robust-
Fig. 6. The rotor problem with a resolution of 400� 400 using the HLLD Riemann solver. 30 equally spaced contour lines are plotted.



Fig. 7. The Mach number for the rotor problem on a resolution of 100� 100 using the HLLD Riemann solver. 30 equally spaced contour lines are plotted. In
(b) the circular shapes of the contour lines are well captured even with this low resolution.

968 D. Lee, A.E. Deane / Journal of Computational Physics 228 (2009) 952–975
ness of MHD schemes. The challenge for this problem is to demonstrate supersonic flow in the pre-shock and the post-shock
regions, as well as the correct physics near the sharp boundary of the cloud.

The same initial condition is adopted as presented in [40]. The flow is solved on a computational domain of size
½0;1� � ½0;1� on a uniform N � N grid. The simulation is carried out to the final time t ¼ 0:06 with N ¼ 400. The initial dis-
continuity involves the left and right states along a line x ¼ 0:6 parallel to the y-axis, with
3 For
ðq;u;v ;w;Bx;By;Bz;pÞ ¼
ð3:86859;0; 0;0;0;2:1826182;�2:1826182;167:345Þ if x 6 0:6;
ð1;�11:2536; 0;0; 0;0:56418958;0:56418958;1Þ if x > 0:6:

�
ð73Þ
The high density cloud is located on the right side of the domain, for which its circular shape is defined by
ðx� 0:8Þ2 þ ðy� 0:5Þ2 ¼ 0:152. The uniform density q ¼ 10 and pressure p ¼ 1 are fixed in the inner region, and c ¼ 5=3.
The velocity and the magnetic fields are the same as the surrounding right state plasma values. Supersonic inflow boundary
conditions are imposed along the right-most boundary at x ¼ 1 and outflow boundary conditions are used for all other
boundaries.

As shown in the density plots in Fig. 8, the temporal evolution involves the disruption of the high density cloud by the
shock initially located at x ¼ 0:6. The red3 areas indicate the strongly shocked regions and the overall flow features compare
well with the results in [24,40]. It was found by Tóth that a dimensionally-split MHD algorithm can easily fail due to unphysical
states (e.g., negative pressure or density) produced during the strong interaction of the shock with the cloud even when the
rather diffusive Minmod limiter was used. However, in the USM–MEC scheme, using the van Leer’s limiter, the final time step
is reached successfully without such problems.

5.6. MHD blast wave

The next test case presented is the MHD spherical blast wave problem of Zachary et al. [43]. This problem leads to the
formation and propagation of strong MHD discontinuities, relevant to astrophysical phenomena where the magnetic field
energy has strong dynamical effects. With a numerical scheme that fails to preserve the divergence-free constraint, unphys-
ical states could be obtained involving negative gas pressure because the background magnetic pressure increases the
strength of magnetic monopoles.

This problem was computed in two different flow regimes by considering intermediate and strong magnetic field
strengths. The computational domain is a square ½�0:5;0:5� � ½�0:5;0:5� with a grid of resolution 200� 200. The explosion
is driven by an over-pressurized circular region at the center of the domain with a radius r ¼ 0:1. The initial density is unity
everywhere, and the pressure of the ambient gas is 0.1, whereas the pressure of the inner region is 1000. Two different re-
gimes of a uniform magnetic field in the x-direction are studied, with Bx ¼ 50=

ffiffiffiffiffiffi
4p
p

and 100=
ffiffiffiffiffiffi
4p
p

. These initial conditions
result in very low-b ambient plasma states, b ¼ 1� 10�3 and 2:513� 10�4 respectively. Through these low-b ambient states,
the explosion emits almost spherical fast magneto-sonic shocks that propagate with the fastest wave speed. The flow has
c ¼ 1:4.
interpretation of color in Figs. 3–12, the reader is referred to the web version of this article.



Fig. 8. The MHD interaction between the high density cloud and shock structures resolved on 400� 400 grid using the HLLD Riemann solver. All plots show
a same color scheme ranging between 0.6169 (pink) and 71.82 (red).
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The intermediate magnetic field strength case with Bx ¼ 50=
ffiffiffiffiffiffi
4p
p

is illustrated in Fig. 9. An anisotropic explosion behavior
is seen because of the existence of the non-zero magnetic field strength in x-direction. With this value of the Bx field, the
shock waves still somewhat preserve the spherically symmetric shapes, although the development of the elongated wave
structures in the direction parallel to the Bx field are evident.

For the stronger magnetic field case, Bx ¼ 100=
ffiffiffiffiffiffi
4p
p

, shown in Fig. 10, the explosion now becomes highly anisotropic. In
Fig. 10(b), the displacement of gas in the transverse y-direction is increasingly inhibited and hydrodynamical shocks prop-
agate in both positive and negative x-directions parallel to Bx. It is also evident in (d) that several weak magneto-sonic waves
are radiated transverse to x-direction. This process continues until total pressure equilibrium is reached in the central region.

Balsara [4] found that the strong wave propagation oblique to the mesh can cause unphysical negativity in the pressure.
Such effects are manifested as distortions of contours especially near the outer boundary where a large and unphysical drop
in pressure takes place immediately ahead of the shock. No such excrescence is evident in our calculation.



Fig. 9. Results of the blast problem simulation with Bx ¼ 50=
ffiffiffiffiffiffi
4p
p

using the Roe Riemann solver. 30 contour lines are plotted.
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We further consider the possibility of an unphysical drop in pressure by looking at it on a logarithmic scale. It is asserted in
[4] the scheme presented there (a modified flux-CT scheme with slope limiters, denoted as the fast TVD limiter and a multi-
dimensional limiter) performs well for this stringent blast problem, and indeed it is stable and able to capture the main fea-
tures of the flow. However, as published in Fig. 6(b) and (f) of [4], drops in the pressure can be observed particularly in regions
where the direction of the strong wave propagation is oblique to the mesh. In their 6(b), with the fast TVD slope limiter em-
ployed, distorted profiles at the outer boundary in these regions are evident, while in their Fig. 6(f) these effects are seen to be
mitigated but not eliminated with the use of the multidimensional slope limiter. In contrast, as shown in Fig. 11, the USM–
MEC scheme displays sharper profiles in these regions at the outer boundary. The modified flux-CT scheme in [4] appears
more diffusive than the present scheme and exhibits a narrower bandwidth in the y-direction at the center of the inner blast
wave structure. It also appears that the overall wave structures are predicted in more detail with the USM–MEC scheme, while
in [4] regions appear featureless with the modified flux-CT scheme using the slope limiters proposed therein, although this
could be a plotting artifact of the latter figures. The USM–MEC scheme also produces sharper features in the pre-shock regions
in both the negative and positive x-directions, while the figures in Fig. 6(b) and (f) of [4] display more diffuse features.

The test case shows that the USM–MEC scheme does not suffer from observable unphysical effects in strongly shocked
cases and continues to maintain sharp features. The results compare quite favorably with those of other MHD schemes which
can generate strong distortions of the outer contours (see [22]). For instance, Fig. 19 of [22] shows a contour plot of the den-



Fig. 10. Results of the blast problem simulation with Bx ¼ 100=
ffiffiffiffiffiffi
4p
p

using the Roe Riemann solver. 30 contour lines are plotted.
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sity using the 8-wave scheme of Janhunen [20], where numerous unphysical peaks and distortions are evident. In contrast,
smooth contours mark the density field in the USM–MEC calculation shown in Fig. 10(a).

Several other CT-type schemes were tested in [22], including the modified flux-CT of Balsara [4] and upwinding-CT (UTC)
schemes of Londrillo and Del Zanna [27]. That study points out that the negativity of the pressure variable could easily be
introduced, especially in low-b simulations like this blast problem, and the author found it useful to turn on an energy-fix
switch in order to overcome the issue. The situation was found to be more severe in the UTC-based schemes, in that some
specific parameters were needed in many cases for successful completion of the calculation. While ameliorating the pressure
negativity issue, there still exist other distortions of the fields using those CT-type schemes as indicated in Fig. 17 of [22]. It
can also be seen in plots of their so-labeled BS2 and BS3 that there appears to be no qualitative difference between the re-
sults when adopting the comparatively newer reconstruction scheme of Balsara [4]. These negativity issue as well as the
parameter instability were not found in the USM–MEC scheme, indicating the robustness of our scheme.

5.7. Current sheet and magnetic reconnection

The current sheet test, suggested by Gardiner and Stone [16], concerns the magnetic reconnection process through the
presence of two current sheets. This problem is particularly useful in discriminating between algorithms and in demonstrat-



Fig. 11. Shown is log10p at t ¼ 0:01 for the blast problem with Bx ¼ 100=
ffiffiffiffiffiffi
4p
p

using the USM–MEC scheme. The color map is chosen to reveal details.
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ing the robustness of integration algorithms. We perform the same test as [16] with the USM–MEC scheme, but consider
more stringent flow cases using a set of very low-b values.

Two current sheets are initialized in the computational domain ½�0:5;0:5� � ½�0:5;0:5� as
By ¼

B0ffiffiffiffi
4p
p if � 0:5 6 x < �0:25;

� B0ffiffiffiffi
4p
p if � 0:25 6 x 6 0:25;

B0ffiffiffiffi
4p
p if 0:25 < x 6 0:5;

8>><>>: ð74Þ
where B0 ¼ 1. The other magnetic field components Bx and Bz are set to zero. The problem is resolved on a grid of resolution
400� 400 and periodic boundary conditions are applied on all boundaries. The x-component of the velocity is u ¼ u0 sin 2py
with u0 ¼ 0:1, and all other velocity components are initialized with zero. The density is unity and the gas pressure p is ini-
tialized by p ¼ bBp. The initial dynamics of the flow is driven by the very strong magnetic forces with our choices of low plas-
ma beta b� 1.

The temporal evolution of the magnetic field lines is shown in Fig. 12 using different values of b ¼ 10�3;10�4;10�5, and
10�6. It has been noted in [38,23] that the algorithms described therein failed to calculate the strongly nonlinear flow
dynamics using these set of b values. We find that the USM–MEC scheme does not encounter any instabilities or other fail-
ures until a very late time t ¼ 10 as illustrated in Fig. 12. With these very low b values, the algorithm should calculate the
nonlinear dynamics involving strong compressions and rarefactions, preserving the divergence-free constraint successfully.

As reconnection occurs, it releases strong plasma energy transverse to the field, launching strong magneto-sonic waves.
During such reconnection the magnetic energy is converted into thermal energy, which in turn, seeds more reconnections,
and thereby a series of magnetic islands are formed along the two current sheets. As seen in Fig. 12 several magnetic islands
are observable in different sizes and smaller islands merge into bigger ones with continuous shifts along the current sheets.

5.8. Convergence tests

In this section we present results of convergence tests on the Orszag–Tang (Section 5.3), Rotor (Section 5.4), cloud–shock
interaction (Section 5.5), and MHD Blast wave ðBx ¼ 100=

ffiffiffiffiffiffi
4p
p

Þ (Section 5.6) problems. In contrast to the circularly polarized
Alfvén wave problem (Section 5.2) where the initial conditions are the exact solutions, these tests do not have any analytical
(or exact) solutions. To quantitatively measure errors in these problems we follow the self-convergence relative-error



Fig. 12. Time evolutions of the magnetic field lines for the current sheet problem. Time increases from top to bottom in each column that represents
different b values. The sequence of images at times t ¼ 2;4;6;8;10. The formation of the magnetic islands indicates the reconnection process in the
simulation. The HLLD Riemann solver was used.
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approach as in Tóth [40] to calculate the numerical errors on all the meaningful primitive variables (i.e., p;q; u;v ;Bx;By for all
cases and additional w;Bz for the cloud–shock case). For a given variable W the associated error dNðWÞ is defined as



Table 1
Convergence rates of the four MHD problems using the Roe and HLLD Riemann solvers for solutions at each final time step

Orszag–Tang at t ¼ 0:5 Rotor at t ¼ 0:15 Cloud–shock at t ¼ 0:06 Blast wave at t ¼ 0:01

Riemann
solver

d50 d100 d200 d50 d100 d200 d50 d100 d200 d50 d100 d200

Roe 0.1016 0.0522 0.0199 0.1147 0.0598 0.0250 0.2189 0.1531 0.0805 0.1513 0.0816 0.0364
HLLD 0.0975 0.0498 0.0201 0.1164 0.0592 0.0260 0.2134 0.1496 0.0796 0.1504 0.0807 0.0339
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dNðWÞ ¼
PN

j¼1

PN
i¼1jW

N
i;j �Whigh

i;j jPN
j¼1

PN
i¼1jW

high
i;j j

; ð75Þ
where Whigh
i;j is the coarsened data at each lower resolution (i.e., N ¼ 50;100;200) from the high resolution (or reference) data

(i.e., N ¼ 400). Our reference solutions in all four cases were obtained on 400� 400 cells. The averaged error dN over all prim-
itive variables is then given by
dN ¼
ðdNðpÞ þ dNðqÞ þ dNðuÞ þ dNðvÞ þ dNðBxÞ þ dNðByÞÞ=6;
ðdNðpÞ þ dNðqÞ þ dNðuÞ þ dNðvÞ þ dNðwÞ þ dNðBxÞ þ dNðByÞ þ dNðBzÞÞ=8;

�
ð76Þ
where the first is for the Orszag–Tang, Rotor, Blast wave tests and the second is for the cloud–shock interaction test. The
results in Table 1 indicate the USM–MEC scheme provides the convergence rate close to 1.0 for the discontinuity dominant
flows, while giving the expected second-order accuracy for smoothly varying flows as in the circularly polarized Alfvén wave
problem.

6. Conclusion

The USM–MEC scheme has been introduced, developed, and studied in this paper. The method uses characteristic analysis
to account for contributions of both normal and transverse MHD fluxes in an unsplit fashion. The scheme handles multidi-
mensional MHD terms consistently using the characteristic method in the data reconstruction–evolution algorithm. Such
multidimensional treatment has been ignored in many of the dimensionally-splitting based MHD schemes. Our new ap-
proach involves physical considerations that multidimensional MHD schemes should manifest. In particular, such multidi-
mensional considerations eliminate unphysical secular growth that would cause deviations from the in-plane dynamical
evolution. To ascertain the correct in-plane dynamics, the 2D MHD problem of field loop advection was tested. Spurious
numerical errors proportional tor � B would affect the growth of Bz, and ultimately alter the in-plane dynamics of the prob-
lem. These errors were found to be absent in the current scheme. The presented data reconstruction–evolution method not
only resolves the issue but is also significantly advantageous in extending the 2D algorithm to a 3D implementation in a
straightforward way, allowing a wide range of CFL stability limit, e.g., less than 1.0.

We also present the new MEC scheme that appears to improve the solution accuracy of similar schemes (e.g., the flux-CT
scheme of [2]) by incorporating more directional considerations of the high-order Godunov fluxes obtained from the duality
relationship in the flux-CT scheme. The high-order terms introduced in the MEC scheme accounts for proper amounts of
numerical dissipation that manifests correct physical evolutions of MHD flows in the stringent set of numerical simulations
given in our test suites.

The results of several test problems give considerable confidence in our scheme for use as a robust and reliable second-
order MHD algorithm. The full USM–MEC scheme preserves the divergence-free constraint extremely well without any evi-
dence of numerical instabilities or accumulation of unphysical errors. As verification, the suite of test problems presented in
this study include several stringent setups that stress various features of MHD algorithms. The scheme has been thoroughly
tested and has been shown to perform very well, providing confidence in correctly simulating a wide range of magnetohy-
drodynamic physical phenomena (i.e., b 	 10�6).

This paper has detailed the core algorithmic features of the USM–MEC scheme, laying down the important multidimen-
sional aspects, and subjecting it to a series of tests. The overall USM–MEC scheme utilizes the compact grid stencil arrange-
ments for the second-order accuracy on each local cell, allowing a very efficient and easy implementation on hierarchical
AMR grid structures. In subsequent publications we will present extensions of this scheme that support parallel adaptive
mesh refinement (early parallel results were reported in [21]) and an implementation in 3D.

The scheme presented here for 2D as well as a full 3D implementation on both uniform and AMR grids have been inte-
grated and tested in the freely available FLASH3 release of the University of Chicago ASC FLASH Center [15].
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